CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. p. 5486.

- DICKINSON, C., STEWART, J. M. & HOLDEN, J. R. (1966). Acta Cryst. 21, 663.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- EGGELTON, P. & EGGELTON, G. P. (1927). Biochem. J. 21, 190.
- ENNOR, A. H. (1957). In *Methods in Enzymology*. Edited by S. P. COLOWICK & N. O. KAPLAN. Vol.III, p.855. New York: Academic Press.
- ENNOR, A. H. & STOCKEN, L. A. (1957). *Biochemical Preparations*. Edited by D. SHEMIN. Vol. 5, p. 9. New York: John Wiley.
- FISKE, C. H. & SUBBAROW, Y. (1927). J. Biol. Chem. 74, p. xxii.
- FISKE, C. H. & SUBBAROW, Y. (1929). J. Biol. Chem. 81, 629.
- GUILHEM, J. (1967). Acta Cryst. 23, 330.
- HAAS, D. J., HARRIS, D. R. & MILLS, H. H. (1965). Acta Cryst. 19, 676.
- HAMILTON, W. (1955). Acta Cryst. 8, 185.
- HAMILTON, W. (1965). Trans. Amer. Cryst. Assoc. 1, 17.
- HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No.3. Pittsburgh: Polycrystal Book Service.

- HILL, T. & MORALES, M. F. (1951). J. Amer. Chem. Soc. 73, 1656.
- HOBBS, E., CORBRIDGE, D. E. C. & RAISTRICK, B. (1953). Acta Cryst. 6, 621.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JENSEN, L. H. (1955). Acta Cryst. 8, 237.
- KALCKAR, H. M. (1941). Chem. Rev. 28, 71.
- KARLE, I. L. & BRITTS, K. (1966). Acta Cryst. 20, 118.
- KIRKPATRICK, P. (1944). Rev. Sci. Instrum. 15, 223.
- LINGAFELTER, E. C. & DONOHUE, J. (1966). Acta Cryst. 20, 321.
- MENDEL, H. & HODGKIN, D. C. (1954). Acta Cryst. 7, 443.PATTERSON, A. L. & LOVE, W. E. (1960). Amer. Min. 45, 325.
- PAULING, L. (1950). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- SAYRE, D. (1952). Acta Cryst. 5, 60.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- STEWART, J. M. (1964). Technical Report Tr 64-6, NsG-398. Computer Science Center of the University of Maryland, College Park.

Acta Cryst. (1968). B24, 1027

Structure Cristalline de MoNb₁₅O₄₀F

PAR J. GALY*

Institute of Inorganic Chemistry, Stockholm, Suède

ET STEN ANDERSSON

Research Institute of National Defence, Department 4, Stockholm, Suède

(Reçu le 4 novembre 1967)

MoNb₁₅O₄₀F crystallizes in the monoclinic system with lattice parameters $a=22\cdot29$, $b=3\cdot831$, $c=20\cdot27$ Å, $\beta=114^{\circ}$. The space group is C2. The original structure, refined by least-squares methods, contains ReO₃-type blocks of Nb–O octahedra, 3×5 and infinite along b. The blocks are joined by sharing edges and with tetrahedrally coordinated Mo atoms at the junctions of every four blocks. MoNb₁₅O₄₀F can be represented by the structural formula:

Les systèmes binaires MoO_3-NbO_2F , $NbO_2F-Nb_2O_5$ et $MoO_3-Nb_2O_5$ ont fait l'objet d'études approfondies. Si le système MoO_3-NbO_2F ne révèle la présence d'aucune phase nouvelle, les deux autres systèmes sont par contre beaucoup plus riches.

Le système $NbO_2F-Nb_2O_5$ comporte quatre composés originaux Nb_3O_7F , $Nb_5O_{12}F$, $Nb_{17}O_{42}F$ et $Nb_{31}O_{77}F$, dont la préparation et l'étude structurale sont dues à Andersson et Åström (Andersson, 1964, 1965*a*; Andersson & Åström, 1964; Åström, 1966).

Dans le système $MoO_3-Nb_2O_5$ deux phases ont été mises en évidence et leurs caractères cristallographiques précisés: l'une $Mo_3Nb_{14}O_{44}$, de symétrie quadratique, est isotype de $W_3Nb_{14}O_{44}$, l'autre $MoNb_{12}O_{33}$, monoclinique, est isotype de $WNb_{12}O_{33}$; ces composés du tungstène ont été préparés et étudiés par Roth & Wadsley (1965).

^{*} Adresse permanente: Service de Chimie Minérale Structurale, Faculté des Sciences, 33-Talence, France.

Dans le diagramme de phase illustré par la Fig.1, seules les phases précisées sur le plan structural ont été représentées. Les systèmes $MoO_3-Nb_2O_5$ et $MoO_3-Nb_2O_5-NbO_2F$ contiennent d'autres phases originales qui toutefois ne sont pas reportées ici.

L'étude du système ternaire MoO₃-Nb₂O₅-NbO₂F s'avérait extrêmement prometteuse du fait du grand nombre de combinaisons susceptibles d'être envisagées. Nous avons alors tenté de préparer le composé $MoNb_{16}O_{42}F_2$ pensant obtenir la structure quadratique de W₃Nb₁₄O₄₄; W₃Nb₁₄O₄₄ appartient à la série $B_{nm+1}O_{3nm-(n+m)+4}$ (avec m=n=4) de Roth & Wadsley (les deux variables m et n représentent le nombre d'octaèdres respectivement sur la largeur et la longueur des blocks de type ReO₃ constituant ces structures). L'étude radiocristallographique des cristaux isolés après fusion du mélange de composition $MoNb_{16}O_{42}F_2$ révélait en fait une symétrie monoclinique; la détermination de la structure a permis de préciser la formule de ces cristaux, MoNb₁₅O₄₀F, qui correspond à un oxyfluorure double entièrement nouveau. Cet oxyfluorure MoNb₁₅O₄₀F se replace dans la série $B_{nm+1}O_{3nm-(n+m)+4}$ pour les valeurs: m=3 et n=5.

Préparation et caractérisation

L'oxyfluorure double $MoNb_{15}O_{40}F$ a été obtenu pur par synthèse directe à 1000 °C en tube scellé de platine de quantités stoechiométriques d'oxydes de niobium Nb_2O_5 , de molybdène MoO_3 et d'oxyfluorure de niobium NbO_2F suivant l'équation de réaction:

$$7Nb_2O_5 + MoO_3 + NbO_2F \rightarrow MoNb_{15}O_{40}F$$
.

La réaction complète au bout de 12 heures de chauffe, donne un matériau homogène, blanc, bien cristallisé. Le spectre de poudre réalisé à l'aide d'une chambre Guinier-Hägg pour la radiation Cu $K\alpha$ et calibré intérieurement avec du chlorure de potassium est donné au Tableau 1.

Tableau 1. Spectre de poudre de $MoNb_{15}O_{40}F$ (Cu K α)

lobs	$\sin^2 \theta_{obs}$	$\sin^2 \theta_{calc}$	h	ĸ	l
vw	0,00176	0,00173	0	0	1
w	0,00484	0,00489	2	0	T
UW	0,00683	0,00692	0	0	2
vw	0,00740	0,00752	2	0	2
vw	0,01782	0,01776	2	0	2
vw	0,01948	0,01957	4	0	2
m	0,02301	0,02311	4	0	3
w	0,02898	0,02897	2	0	3
st	0,04184	0,04186	1	1	0
st	0,04221	0,04231	1	1	ī
net	0.04380	∫ 0,04364	2	0	4
051	0,04369	0,04405	6	0	3
w	0,04464	0,04487	1	1	1
vst	0,04846	0,04847	6	0	4
UW	0,05119	0,05134	1	1	2
m	0.05246	∫ 0,05254	3	1	$\overline{2}$
	0,03240	0,05264	2	0	6

Tous les cristaux étudiés sont invariablement maclés comme le révèlent les clichés de Weissenberg. Cependant après avoir séparé les réseaux réciproques, qui s'interpénétraient, il a été possible de déterminer une maille monoclinique.

Les paramètres donnés au Tableau 2 avec les autres constantes cristallographiques permettent d'indexer parfaitement le spectre de poudre.

Tableau 2.	Données	cristallographiques	de			
MoNb ₁₅ O ₄₀ F						

Symétrie:	monoclinique					
Paramètres:	$a = 22,29 \pm 0,01 \text{ Å}$ $b = 3,831 \pm 0,002$ $c = 20,27 \pm 0,01$ $\beta = 114,00 \pm 0,05^{\circ}$					
Groupe spatial	C2, Cm ou $C2/m$					
D_m	4,48					
D_x	4,51					
Ζ	2					

Une seule règle d'extinctions systématiques a été relevée: h+k=2n+1 pour hkl, correspondant aux groupes spatiaux C2, Cm ou C2/m.

Détermination de la structure

Les données cristallographiques pour la détermination de la structure ont été collectées à partir d'un cristal de dimensions $0,03 \text{ mm} \times 0,02 \text{ mm}$ à l'aide d'une chambre de Weissenberg munie d'un dispositif d'intégration (rayonnement utilisé: $K\alpha$ du cuivre).

La mesure des intensités a été faite visuellement par comparaison des taches de diffraction avec celles d'une échelle photographique préalablement étalonnée. Seule la correction par le facteur de Lorentz-polarisation a été effectuée.

Les facteurs de diffusion atomique pour Nb⁵⁺ sont ceux déterminés par Thomas & Umeda (1957) et pour

 O^{2-} ceux déterminés par Suzuki (1960); en raison des faibles différences existant entre leurs facteurs de diffusion, l'atome de molybdène a été traité comme un atome de niobium et l'atome de fluor comme un atome d'oxygène.

Les calculs ont été réalisés sur IBM 7090.

Une sous-maille simple orthorhombique présentant de grandes analogies avec la structure de type ReO₃ a été reconnue dans le réseau réciproque; les relations vectorielles entre la vraie maille et la sous-maille ont été établies:

$$a = 5a_{\rm ReO3} + 2c_{\rm ReO3}$$

$$b = b_{\rm ReO3}$$

$$c = -3.5a_{\rm ReO3} + 3.5c_{\rm ReO3}.$$

A partir de ces relations une structure idéalisée a été obtenue à l'aide de méthodes précédemment développées par Andersson & Wadsley (1962). Cette structure idéalisée présente quelques similitudes avec celle de WNb₁₂O₃₃; cette dernière est en effet constituée de blocs de type ReO₃ de 3×4 octaèdres de côtés, et la structure qui en dérive en prenant des blocs de 3×5 octaèdres de côtés correspond à la composition MoNb₁₅O₄₀F. Des distorsions calculées à partir de WNb₁₂O₃₃ ont été introduites dans la structure idéalisée de MoNb₁₅O₄₀F. Le groupe spatial C2 a été choisi.

Un premier calcul révèle un bon accord entre les 215 facteurs de structure observés et calculés dans les plans h0l et h1l. Ceci confirme le choix du groupe spatial C2. Une série de cycles d'affinement par la méthode des moindres carrés a permis d'abaisser le facteur de reliabilité jusqu'à la valeur R=0,13.

Les coordonnées réduites des divers atomes sont rassemblées au Tableau 3, les distances interatomiques métal-oxygène au Tableau 4 et la comparaison entre facteurs de structure observés et calculés au Tableau 5.

La projection de la structure suivant l'axe Oy est représentée à la Fig.2.

Tableau 3. Coordonnées réduites des atomes

Groupe	spatial	C2
--------	---------	----

	Position	x	У	Z
Мо	2(a)	0	0.250	0
Nb(1)	2(b)	1	0.000	+
Nb(2)	4(c)	Õ.3696	0.000	Õ.5749
Nb(3)	4(c)	0.2371	0,000	0.3880
Nb(4)	4(c)	0,3566	0,000	0,2940
Nb(5)	4(c)	0,5023	0,000	0,2376
Nb(6)	4(c)	0,0943	0,000	0,1804
Nb(7)	4(c)	0,2326	0,000	0,1169
Nb(8)	4(c)	0,3574	0,000	0,0286
F	2(b)	1	0,500	Ţ
O(1)	4(c)	Õ,292	0,000	Õ.603
O(2)	4(c)	0,442	0,000	0,552
O(3)	4(c)	0,293	0,000	0,469
O(4)	4(c)	0,441	0,000	0,397
O(5)	4(c)	0,563	0,000	0,330
O(6)	4(c)	0,149	0,000	0,422
O(7)	4(c)	0.292	0,000	0.335
O(8)	4(c)	0.361	0,500	0,305
O(9)	4(c)	0,434	0,000	0,273

	r	Table 3 (su	ite)	
	Position	x	У	Z
O(10)	4(<i>c</i>)	0,571	0,000	0,196
O(11)	4(c)	0,165	0,000	0,289
O(12)	4(c)	0,295	0,000	0,206
O(13)	4(c)	0,438	0,000	0,139
O(14)	4(c)	0,035	0,000	0,209
O(15)	4(c)	0,165	0,000	0,145
O(16)	4(c)	0,299	0,000	0,071
O(17)	4(c)	0,065	0,500	0,011
O(18)	4(c)	0,035	0,000	0,073
O(19)	4(c)	0,156	0,000	0,011
O(20)	4(<i>c</i>)	0,199	0,500	0,067

Tableau 4. Distances interatomiques

(erreur	±0,15 Å) en Å	
2 Nb(1)-O(2) 2 Nb(1)-O(4) 2 Nb(1)-F	1,97 1,96 1,92 }	Moyenne 1,95
Nb(2)-O(1) Nb(2)-O(2) Nb(2)-O(3) Nb(2)-O(5) 2 Nb(2)-O(6)	2,03 1,85 2,13 1,90 2,04	2,00
Nb(3)-O(3) Nb(3)-O(6) Nb(3)-O(7) Nb(3)-O(11) 2 Nb(3)-O(1)	$\begin{array}{c}1,61\\2,33\\1,93\\2,00\\2,08\end{array}$	2,00
Nb(4)-O(4) Nb(4)-O(7) Nb(4)-O(9) Nb(4)-O(12) 2 Nb(4)-O(8)	2,17 1,93 1,94 1,75 1,93	1,94
Nb(5)-O(5) Nb(5)-O(9) Nb(5)-O(10) Nb(5)-O(13) 2 Nb(5)-O(14)	1,81 1,93 2,03 1,93 2,16	2,00
Nb(6)-O(11) Nb(6)-O(14) Nb(6)-O(15) Nb(6)-O(18) 2 Nb(6)-O(10)	2,12 1,65 1,98 2,04 1,99	1,96
Nb(7)-O(12) Nb(7)-O(15) Nb(7)-O(16) Nb(7)-O(19) 2 Nb(7)-O(20)	$\begin{array}{c}1,78\\1,82\\2,04\\2,13\\2,15\end{array}$	2,01
Nb(8)-O(13) Nb(8)-O(16) Nb(8)-O(17) Nb(8)-O(20) 2 Nb(8)-O(19)	2,23 1,83 2,03 1,93 2,15	2,05
2 MoO(17)	1,67	
2 Mo-O(18)	1,67	

Description

La structure de MoNb₁₅O₄₀F schématisée par la Fig. 2 est constituée de blocs de type ReO₃ de $3 \times 5 \times \infty$ octaèdres de côtés. Ces blocs sont reliés aux blocs similaires des différents niveaux par l'intermédiaire d'arêtes communes le long de l'axe Oy; à la jonction de chaque groupe de quatre blocs se trouve un site tétraédrique. Ces blocs possèdent un centre de symétrie; l'octaèdre central est constitué par quatre atomes d'oxygène et deux atomes de fluor entourant un atome de niobium. L'atome de molybdène Mo a été placé dans le site tétraédrique.

Discussion

La valeur moyenne des distances interatomiques Nb–O dans $MoNb_{15}O_{40}F$, soit 1,99 Å, est comparable aux

Tableau	5	Comparaison	des	facteurs	de	structures	observés	Pt	calculées
Iuolouu	2.	comparation	acb j	actemb	uc	Sti Herni es	000001000	01	çaremees

	0,0,L			8,0,L		-1	2169	2229	9	1499	1965	1	1092	1130	0	6670 876	6900 883
3	558	683	-13	2713	1444	v		1001		5405		10	1505	1648	12	1840	1 398
ž	375	1286	-12	714	367		16.0.	1		3-1-1		11	2196	2421			
5	2289	2381	-11	6356	5220			-				12	914	451		17.1.1	1
10	3888	3243	-10	2488	2591	-25	944	1217	-23	1565	1 590						-
11	1574	1087	-9	1219	618	-22	1292	1415	-22	2523	2124		9.1.1		-22	2677	3437
13	1124	397	-7	783	893	-12	1486	1672	-21	1108	1584				-17	1802	1910
15	1740	1534	-5	2190	2383	-11	6812	5367	-20	1199	1516	-12	3072	2901	-12	4348	3775
16	1264	1504	-1	2185	3066	-7	1145	392	-18	1292	680	-11	5913	5619	+11	2202	1303
20	808	607	ō	5038	4585	-i	3769	3325	-9	1066	1027	-10	1715	1961	- 4	1814	2641
			ĩ	1562	1227		3248	2722	- A	1890	1874	-9	1497	843	•		
	2.C.L		3	1214	1102				-7	3400	3922	-7	874	859		19.1.	
			4	2788	2008		18.0.	1	-6	67.8	880	-6	1038	1894			-
-12	4271	4383	10	1211	749			-	-2	3990	3817	-1	2059	1984	-19	1601	1730
-10	890	941	11	1248	810	-23	2249	2594	3	5487	5128	;	933	559	-18	2371	2648
-7	2265	1983	15	3417	3710	-21	1311	1607		885	1342	2	4679	6255		1832	2350
-6	1621	2322	•••			-18	1506	1509	Å	4410	4538	14	1484	2313	- 9	3170	3470
-2	655	627		10.0.	L	-12	1261	1111	ă	1017	508	16	1457	1001		5110	3410
2	1002	1373			-	-9	1514	1721	17	883	842			1001		21.1.	
3	3529	3836	-23	1037	1149	- 8	2753	3292	18	2210	2189		11.1.				
4	7383	9950	-17	1255	1816	- ž	2299	2241	20	95.9	670			•	- 20	952	683
5	1998	1909	-12	3694	3361							- 23	1718	1223	-15	1414	3437
9	2765	2804	-7	7543	7975		20.0.	1		5.1.1		-18	1935	2250	-14	1747	1 705
14	2997	2544	ż	6044	5399			•				-13	1170	1717	-10	1270	1205
			4	3297	3304	-19	3536	3608	-24	1563	1169	-0	1015	1590	-4	2694	3357
	4,0,L		5	1503	510				-19	361 3	3065	-8	7375	6997		2074	
			6	1110	1217		22.0.	L	-8	812	1151	-7	5927	5061		23.1.	1
-13	3270	3090	14	1180	718				-7	1070	890	-6	1766	2414			•
-8	6171	5129				-16	2155	1750	-6	1115	1147	-2	946	1562	-16	1491	1491
-3	3508	3765		12,0,	L	-15	4009	4482	-5	1613	2150	3	2319	2201	-11	3236	3149
2	1100	389				0	3231	2607	-4	4979	5121	8	2216	1426	-1	2472	2022
7	7387	7319	-19	3478	3210				- 3	4760	4922				ā	1742	1 21 3
8	5397	6350	-17	1265	1230		24.0.	L	-2	1232	1631		13.1.	1	•		
9	1862	1767	-13	1603	1396				1	646	1067					25.1.	
13	1500	1632	-9	1570	711	-17	972	1137	2	1692	2030	-24	838	1052			•
			-8	4644	5486	-16	720	153	6	1117	1072	-19	32 39	2896	-12	1873	1812
	6,0,L		-7	1898	2280	-12	3378	3091	7	5678	5995	-18	1293	986	-7	2472	2742
			-5	1737	1674	-11	3415	2438	8	1035	1270	-9	1897	1943			
- 25	651	229	-4	2860	3144				9	1551	1745	-4	6527	6716		27.1.	•
-14	4973	4646	-3	3678	3721		1,1,1		12	1255	1070	7	1833	1093			-
-9	2334	2250	2	1489	1899				21	748	308	10	1246	1127	-9	925	74.8
	1123	1174	7	3714	3055	-11	5663	612C							- 8	1047	1 586
-4	1006	9741				-6	1624	1759		7,1,1			15,1,	L	-		
-3	1911	1985		14.0,	L	-5	879	1029									
-2	1040	1862				-2	464	1060	-15	6462	6681	-16	2429	1930			
-1	/4/	1402	-15	4802	3997	2	1941	2176	-11	1004	506	-15	1826	1911			
1	640	1404	- ?	1941	1425	3	2142	2422	-5	1470	1409	-14	903	973			
- 11	4 2 0 5	4630		1465	1/92	4	3717	4084	-1	1013	1 3 0 5	-11	1215	1742			
	7200	4520	-2	1045	2297	5	1262	1427	0	428 Z	3782	-1	1467	1036			

Fig.2. Projection de la structure de $MoNb_{15}O_{40}F$ sur le plan (010).

Fig. 3. Structures idéalisées de PNb₉O₂₅ (blocs $3 \times 3 \times \infty$), WNb₁₂O₃₃ (blocs $3 \times 4 \times \infty$), MoNb₁₅O₄₀F (blocs $3 \times 5 \times \infty$) et W₈Nb₁₈O₆₉ (blocs $5 \times 5 \times \infty$). Les cercles représentent les atomes en site tétraédrique.

distances Nb–O observées dans H–Nb₂O₅ (1,99 Å) par Gatehouse & Wadsley (1964) ou dans N–Nb₂O₅ (2,01 Å) par Andersson (1967).

La moyenne des distances interatomiques Mo-O (1,67 Å) correspondant à l'environnement tétraédrique est en bon accord avec les résultats précédemment obtenus pour ce type de sites dans $H-Nb_2O_5$ (Nb-O=1,67 Å).

Reprenant la formulation structurale d'Andersson (1965*b*), $MoNb_{15}O_{40}F$ peut être représenté par le symbole structural:

0=	=0-	$-0 \rightarrow n$
Ó-	- <i>T</i> -	$-0 \rightarrow n$
0-	-O=	$=0 \rightarrow n$
↓	¥	¥
m	m	m

avec le molybdène dans le site tétraédrique T, la dimension des blocs de type ReO₃ étant indiquée par met n (m=3 et n=5 dans MoNb₁₅O₄₀F). La structure de MoNb₁₅O₄₀F apparaît extrêmement originale parmi les composés appartenant à ce type structural; en effet on connaissait:

	$m \times n$	Symétrie
PNb9O25 (Fig. 3)	3×3	Quadratique
$WNb_{12}O_{33}$ (Fig. 3)	3×4	Monoclinique
W ₃ Nb ₁₄ O ₄₄	4×4	Quadratique
W ₅ Nb ₁₆ O ₅₅	4×5	Monoclinique
W ₈ Nb ₁₈ O ₆₉ (Fig. 3)	5×5	Quadratique

mais dans ces structures la différence maximum entre longueur et largeur des blocs de type ReO_3 était tout au plus d'une unité. MoNb₁₅O₄₀F est le premier exemple où n-m>1 (n-m=2).

L'impossibilité d'obtenir un composé isostructural en remplaçant NbO_2F par MoO_3 ou WO_3 nous incite à accorder au fluor un rôle non négligeable dans la stabilisation de cette structure.

J. Galy voudrait remercier le Professeur Arne Magnéli, Institut de Chimie Minérale, Université de Stockholm, Suède, pour son hospitalité durant le stage qu'il a effectué à Stockholm, stage au cours duquel ce travail a été réalisé.

Références

- ANDERSSON, S. (1964). Acta Chem. Scand. 18, 2339.
- ANDERSSON, S. (1965a). Acta Chem. Scand. 19, 1401.
- ANDERSSON, S. (1965b). Bull. Soc. chim. France, 1088.
- ANDERSSON, S. (1967). Z. anorg. allg. Chem. 351, 106.
- ANDERSSON, S. & WADSLEY, A. D. (1962). Acta Cryst. 15, 194.
- ANDERSSON, S. & ÅSTRÖM, A. (1964). Acta Chem. Scand. 18, 2233.
- GATEHOUSE, B. M. & WADSLEY, A. D. (1964). Acta Cryst. 17, 1545.
- ROTH, R. S. & WADSLEY, A. D. (1965). Acta Cryst. 19, 26, 32, 38, 42.
- SUZUKI, T. (1960). Acta Cryst. 13, 279.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- ÅSTRÖM, A. (1966). Acta Chem. Scand. 20, 969.